formation (10). We investigated the retinoid-induced RXR homodimer binding to the TREpal by gel retardation assay (16). In the absence of 9-cis-RA, RXR did not bind to this response element (Fig. 3). Retinoids SR11217 and SR11237 induced RXR homodimer binding to the response element in a concentration-dependent manner. Retinoid SR11203, which behaved as a weak activator in the transient transfection assays, induced weak RXR binding (17), whereas the strongest activators, SR11217 and SR11237, induced homodimer binding very effectively, as judged from the strength of the band induced (Fig. 3). Retinoid SR11231, which did not activate the RXR homodimer (17), was not able to induce RXR homodimer binding, either. Similar results were obtained with the CRBPII-RARE and the apolipoprotein AI (apoAI)–RARE (17).

To analyze whether these retinoids were selective for RXR homodimers, we used reporter constructs carrying either the rat cytoplasmic retinol-binding protein 1 (CRBPI) gene RARE (18), which is only bound and activated by RXR-RXR heterodimers (10), the RARβ2 gene promoter RARE (19), which is most effectively bound by heterodimers but also activated to a somewhat lesser degree by RXR homodimers (10); the CRBPII-RARE, which is activated only by RXR homodimers (10) and on which RAR represses RXR activity (14, 17); or the apoAI gene RARE (20), which is bound and activated by RXR-RXR heterodimers as well as by RXR homodimers. Each reporter construct was cotransfected with RARα, RARβ, RXRα, or RXRα and RARα together (13). The retinoids were analyzed at a concentration of 5 × 10⁻⁷ M (a dose shown to yield almost full induction, Fig. 2). The retinoids activated only RXR homodimers, but not RXR-RXR heterodimers (Fig. 4). Like 9-cis-RA, both SR11217 and SR11237 were strong activators of the CRBPII-RARE. However, in contrast to 9-cis-RA, they did not induce the CRBPII-RARE, which is activated only by the RXR-RXR heterodimer (Fig. 4). Thus, although SR11217 and SR11237 behaved very similarly to 9-cis-RA on the CRBPII-RARE, they showed no response on the CRBPII-RARE, on which 9-cis-RA is the optimal activator. The βRARE was slightly activated by SR11217 and SR11237, consistent with the relatively low affinity of RXR homodimers for this response element (10). The apoAI-RARE was most effectively activated by RXR-RXR heterodimers in the presence of 9-cis-RA, as observed previously (10). In addition to the activity found in CV-1 cells, a significant and RXR-specific activation by retinoids SR11217 and SR11237 was seen in various other cell lines, including Hep G2 cells, where a high response was seen. When cotransfected alone, RARα, RARβ, and RARγ were not activated significantly by any of the synthetic retinoids on any of the response elements tested (Fig. 4) (17). Heterodimers that RARα and RARβ form with endogenous RXR-like proteins in CV-1 cells were also unresponsive to these retinoids.

These retinoids thus specifically induce RXR homodimer formation and activate RXR homodimers, but not RXR-RXR heterodimers. These retinoids allow the specific activation of RXR-selective response pathways but do not induce RXR-dependent response pathways. They should provide a more restricted physiological response than previously available RA isoforms and may be useful for elucidation of retinoid response pathways. Pathological conditions and biological pathways that are only affected by pharmacological doses of RA (21), where RA may induce RXR homodimer formation (10), could also be responsive to this class of retinoids.

REFERENCES AND NOTES

5. M. Liedtke et al., ibid., p. 1419.
8. M. Schink et al., ibid., p. 1419.
23. We thank E. Adamson and E. Rusolani for comments on the manuscript and X. - k. Zhang for discussion. Supported by National Cancer Inst grants P01 CA51963 (M.I.D) and CASO676 (M.P.).

2 September 1992; accepted 23 October 1992

Isolation and Structure of a Brain Constituent That Binds to the Cannabinoid Receptor

William A. Devane,*† Lumir Hanů, Aviva Breuer, Roger G. Pertwee, Lesley A. Stevenson, Graeme Griffin, Dan Gibson, Asher Mandelbaum, Alexander Etlinger, Raphael Mechoulam†

Arachidonylthanolamide, an arachidonic acid derivative in porcine brain, was identified in a screen for endogenous ligands for the cannabinoid receptor. The structure of this compound, which has been named “anandamide,” was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and was confirmed by synthesis. Anandamide inhibited the specific binding of a radiolabeled cannabinoid probe to synaptosomal membranes in a manner typical of competitive ligands and produced a concentration-dependent inhibition of the electrically evoked twitch response of the mouse vas deferens, a characteristic effect of psychotropic cannabinoids. These properties suggest that anandamide may function as a natural ligand for the cannabinoid receptor.

The psychoactive constituent of cannabis, Δ⁹-tetrahydrocannabinol (Δ⁹-THC) (1), binds to a specific G protein–coupled receptor in the brain (2). Sequence information on the cannabinoid receptor is available from cloned rat (3) and human (4) genes, but thus far it has not provided insight into the protein’s physiological role(s). The abundance and anatomical localization of the receptor in the brain (5), together with the behavioral effects of Δ⁹-THC (6), are consistent with roles in the control of

1948

SCIENCE • VOL. 258 • 18 DECEMBER 1992
movement, memory, emotions, and pain modulation, among other activities. Although a specific endogenous ligand for the cannabinoid receptor has not yet been identified, its existence is predicted from the strict structural requirements for receptor activation by exogenous ligands (7). Moreover, the 97.3% sequence conservation displayed by the rat and human cannabinoid receptors (4) suggests that this endogenous ligand(s) may also be conserved across species.

To screen for endogenous cannabinoid compounds, we tested the ability of fractions from porcine brain extracts to displace a radiolabeled cannabinoid probe in a centrifugation-based ligand binding assay. The probe, [3H]HU-243 (11-hydroxy-hexahydrocannabinol-3-dimethylheptyl homolog), has a dissociation constant of 45 pM in rat synaptosomal membranes (8). Organic solvent extracts of porcine brain were first chromatographed according to standard protocols for the separation of lipids (9). Because many of the initial fractions included the binding of [3H]HU-243 to the cannabinoid receptor, we paid particular attention to the binding of [3H]HU-243 to the siliconized polyethylene microfuge tubes in which the assay was conducted. Normally, about 15 to 20% of the added [3H]HU-243 adheres to the microfuge tube, with the amount increasing slightly when unlabeled cannabinoid drugs displace the radioligand from the receptor. When monitoring the three-way equilibrium of [3H]HU-243 among the synaptosomal receptors, the solution, and the microfuge tube, we observed that all the crude brain fractions that inhibited the binding of [3H]HU-243 to the receptors also inhibited the binding of the radioligand to the microfuge tube. We speculated that these fractions contained compounds that sequestered the radioligand in the solution, perhaps in micelles formed by lipids. After analyzing the binding behavior of [3H]HU-243 at different concentrations of the brain fractions, we chose those fractions that inhibited binding to the receptor but had the least effect on the adherence of the radioligand to the microfuge tube. Several promising fractions were further purified by low- and medium-pressure column chromatography and by thin-layer chromatography (TLC). Both normal-phase and reversed-phase systems were used (10).

From these fractions we purified a compound (final yield = 0.6 mg from 4.5 kg of brain) that we named anandamide (11). Anandamide showed one spot on TLC and eluted as one main peak on gas chromatography (GC) when a mass spectrometer was used as a detector (12). Anandamide inhibited the specific binding of [3H]HU-243 to

Fig. 3. GC-MS spectrum of anandamide in an ion-trap instrument [for details, see (12)]. Anandamide undergoes thermal degradation under these conditions; hence the spectrum shown is that of the M' ion of the corresponding 2-oxazoline.
The structure of anandamide was established by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. A variety of MS measurements were performed on the purified material (12). Direct-exposure chemical ionization (isobutane-DCI) mass spectrum indicated a molecular weight of 347 (m/z 348 MH⁺ ion). High-resolution MS measurements suggested the elemental composition C₂₀H₃₁NO₂ (m/z 347.2762), which is consistent with the presence of five double bonds or rings. Collision-induced dissociation (CID) measurements of the m/z 348 MH⁺ ion (obtained under isobutane-DCI) gave rise to the following significant fragments: m/z 287, 245, 203, 62 (highest abundance), and 44. The only reasonable composition of the most abundant m/z 62 fragment ion is C₂H₅NO, which corresponds to protonated ethanolamine HOCH₂CH₂NH₂⁺. The m/z 44 ion may be formed by dehydration of the m/z 62 fragment. The m/z 287 [MH-61]⁺ fragment ion corresponds to the loss of ethanolamine (C₂H₅NO) from MH⁺. Additional data were obtained from the GC-MS and CID measurements of the trimethylsilyl (TMS) derivative of the purified material (14). Together, these results suggested that anandamide is an ethanolamide of a tetraenic C₂₀ fatty acid.

Supporting evidence for this general structure was found in the behavior of anandamide under GC-MS conditions (12). Thermal dehydration gave rise to m/z 329 M⁺ ion upon electron ionization (EI) and to m/z 330 MH⁺ ion under CI. Both self-CI m/z 330 MH⁺ and m/z 329 M⁺ were formed under EI conditions in an ion-trap instrument (12) (Fig. 3). A similar dehydration under GC-MS conditions was also observed for synthetic palmitylethanolamide (15), and it presumably leads to the formation of 2-oxazoline derivatives (16). The fragmentation patterns of the dehydration products of anandamide and palmitylethanolamine were similar in the low mass range of the EI mass spectra and included m/z 85 (McLafferty rearrangement ion) and m/z 98 (product of a γ-cleavage) (Fig. 4). The EI mass spectrum of dehydrated palmitylethanolamide exhibited an m/z 112 ion that corresponded to the δ-cleavage fragment. The absence of this ion from the EI mass spectrum obtained in the GC-MS analysis of anandamide suggests the presence of the first double bond in the tetraenic acid at position 5 (as in arachidonylethanolamide, which would not be expected to yield a δ-cleavage product) (Fig. 4).

Because of the small amount of natural anandamide available, we were able to record ¹H NMR spectra only (17). The peaks attributed to double-bond protons (δ 5.30 to 5.45, multiplet) were coupled with those of protons that have the chemical shifts of doubly allylic protons (δ 2.75 to 2.90, multiplet). Such doubly allylic protons are typically found in all-cis, nonconjugated polyunsaturated fatty acids such as linoleic and arachidonic acids (18). Three pairs of protons were observed between δ 2.01 and 2.27, which we attributed to two allylic methylene groups and one methylene group α to a carbonyl moiety. Only one methyl group was observed (δ 0.88, t, triplet). The peaks observed for two protons at 3.42 (N(CH₃)₂), two protons at 3.72 (O(CH₃)₂), and two protons at 2.20 (COCH₂), were similar in chemical shifts and spin-coupling patterns to peaks observed in the NMR spectrum of synthetic palmitylethanolamide. The peaks for N-CH₃ and O-CH₃ were coupled.

A juxtaposition of the various analytical data led us to conclude that the structure of anandamide is that of arachidonyl ethanolamide [5,8,11,14-eicosatetraenoic acid, (N-2-hydroxyethyl)-(all-2)]. This conclusion was confirmed by synthesis (19). Synthetic arachidonylethanolamide was identical with the natural product on TLC, NMR (30°C MH₃SO₄), and GC-MS (retention time and fragmentation pattern) (Fig. 3). Synthetic anandamide bound to the cannabinoid receptor with a Kᵢ of 39 ± 5.0 nM (n = 3).

Classification of a substance as a neuromediator requires fulfillment of numerous criteria, such as receptor specificity and appropriate cellular localization. Although our present results, therefore, do not establish that anandamide is a neuromediator, it is noteworthy that three related lipids, palmitylethanolamide, arachidonic acid methyl ester, and phytanic acid, did not inhibit the binding of [³H]HU-243 to the cannabinoid receptor in concentrations up to 1 μM (15). Howlett et al. (20) have investigated the effect of 136 natural and synthetic ligands for various receptors, including 24 eicosanoid derivatives, on binding of the cannabinoid probe [³H]CP-55940 to rat brain membranes, with essentially negative results. These observations indicate that binding to the cannabinoid receptor by vertebrate constituents is thus far limited to anandamide. We have, however, detected additional porcine brain constituents that display cannabinoid-like activity in both the binding and the vas deferens assays. These constituents appear to differ from anandamide in potency, efficacy, and rate of onset of action (15).

The identification of anandamide as a potential ligand for the cannabinoid receptor reaffirms the biological importance of fatty acid amides and their derivatives. In 1957, palmitylethanolamide from egg yolk was shown to be an anti-inflammatory agent (21), and, in 1965, fatty acid amides of ethanolamine were shown to be endogenous products of mammalian brain tissue.
REFERENCES AND NOTES

10. Porcine brains were homogenized in chloroform and/or methanol and centrifuged at 13,000 g. The organic solvent extract was fractionated over a silica column (70 to 230 μm, Kieselgel 60, Merck), according to elution schemes used to separate the major classes of lipids. [C. C. Sweetleaf, Methods Enzymol. 14, 254 (1968); J. C. Ditter and M. A. Wells, ibid. 48, 46 (1977)].

11. The TLC plates (analytical, RP-18, Merck) were eluted with methanol-chloroform-methanol (4:1:1) and developed twice. The first solvent front was at 3 cm, and the second was at 7.4 cm. The Rf value was 0.65. [W. A. Devane, L. Hanuš, R. Mechoulam, Proceedings of the Fifth Nordic Neurobiology Meeting, Publ. Univ. Kupio-Pat, Med. (1991), p. 198]. Anandamide eluted from a silica column (Kieselgel 60, 40 to 63 μm, Merck) with methanol-chloroform (9:2:8). It eluted from a reversed-phase column (NP-C18 40 to 63 μm, Sigma) with methanol-water (80:20).

12. The term "anandamide" was coined from the Sanskrit word "ananda," meaning bliss, and from the chemical nature of the compound.

13. GC-MS analyses were carried out with a Finnigan ITS-40 system and with a Finnigan TQ-70B triple-stage quadrupole mass spectrometer coupled to a Varian 3400 gas chromatograph. Separations were performed on a DB-5 (0.25 μm film) capillary column that was 30 m in length and had an internal diameter (i.d.) of 0.25 mm. The column temperature was programmed to increase from 60 to 280°C at a rate of 20°C per minute. The compounds were injected into the GC in methylene chloride. The electron energy in EI measurements was 70 eV. The mass spectral measurements were performed with a Varian-MAT 711 double-focusing mass spectrometer. The CID measurements were carried out with the TQ-70B triple-stage mass spectrometer. The collision energy was 50 eV, and argon was used as the target gas at an indicated pressure of 0.4 mbar.

15. The GC-MS and CID measurements of the TMS derivative of anandamide gave m/z 219 M+ and m/z 217 M+CH3+ fragment ions, as indicated by the m/z 219 peak with an intensity of 15% of the m/z 217 peak. The azomethine or oxime (NH) fragment ions at m/z 214 and m/z 212 were also observed.

16. W. A. Devane et al., unpublished data.

Optical methods were used to locate the cell bodies of directionally selective ganglion cells in isolated rabbit retinas. These neurons detect the direction in which images move across the retinal surface and transmit that information to the brain. The receptive field of each identified cell was determined, after which the cell was injected with Lucifer yellow. An image of the receptive field was then projected onto the fluorescent image of the dendrites, allowing precise comparison between them. The size of the receptive field matched closely the size of the dendritic arbor of that cell. This result restricts the types of convergence that can be postulated in modeling the mechanism of retinal directionality selectivity.

A classic problem in the study of neural microcircuitry and neural computation is the mechanism by which directionally selective (DS) ganglion cells interpret inputs from preceding retinal neurons to detect the direction of movement of a visual image formed on the retina (1-3). The relatively simple neural circuitry involved and the specific and clear function performed by DS cells have made this problem attractive for computational modeling. However, the modeling has been based on sparse biological facts. The input-output relations of the DS cells have been studied in detail and their dendritic morphology has been established (4), but the neural circuits that converge on the DS cells to create directional selectivity are unknown.

Cholinergic inputs from the starburst amacrine cells monosynaptically excite the DS ganglion cells (5, 6). The starburst amacrine cells have widely spreading dendritic fields, which overlap extensively (7). Because a DS cell receives inputs from many starburst amacrine cells, the receptive field of each DS cell should cover an area considerably wider than the dendritic arbor Germany.